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A B S T R A C T

Learning structures that effectively abstract decision policies is key to the flexibility of human intelligence.
Previous work has shown that humans use hierarchically structured policies to efficiently navigate complex
and dynamic environments. However, the computational processes that support the learning and construction
of such policies remain insufficiently understood. To address this question, we tested 1026 human participants,
who made over 1 million choices combined, in a decision-making task where they could learn, transfer, and
recompose multiple sets of hierarchical policies. We propose a novel algorithmic account for the learning
processes underlying observed human behavior. We show that humans rely on compressed policies over states
in early learning, which gradually unfold into hierarchical representations via meta-learning and Bayesian
inference. Our modeling evidence suggests that these hierarchical policies are structured in a temporally
backward, rather than forward, fashion. Taken together, these algorithmic architectures characterize how the
interplay between reinforcement learning, policy compression, meta-learning, and working memory supports
structured decision-making and compositionality in a resource-rational way.
1. Introduction

From choosing a career to choosing socks, we make decisions all the
time in our daily life, whether big or small. In this process, we learn
strategies that guide us to make decisions in the future informed by our
past experience. Such a strategy can be described by a policy function
that takes the current state of the environment as an input and outputs
some action to take in this state. For an example of a simple decision
policy, imagine that you have a tomato and want to decide what to do
with it. What is the first thing that comes to mind? You could slice it,
roast it, store it in the fridge, or more. In this case, the tomato is the
state, and you used some policy that you have learned through your
past experience with tomatoes to choose an action.

However, real-life decisions are rarely isolated from other decisions
like in this toy example – they are often interconnected in structured
ways to contextualize one another. An earlier decision might affect the
policy for a later decision: if you had just preheated the oven, your
policy on how to handle a tomato might prefer the roasting action,
while if you had just sliced some sandwich bread, your policy would
be more likely to favor slicing the tomato (Fig. 1A). Humans excel at
understanding the connections between related decisions, states, and
actions, and learning structured policies that guide us to effectively nav-
igate complex and dynamic environments (Wise, Emery, & Radulescu,
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2023). A prominent theme in human cognitive representations of de-
cision structures is hierarchy : humans learn hierarchically structured
decision policies, in which high-level representations form abstractions
over low-level representations (Badre, 2008; Badre & D’Esposito, 2007;
Botvinick, Niv, & Barto, 2009; Collins & Frank, 2013; Diuk et al., 2013;
Eckstein & Collins, 2020; Ho et al., 2022; Koechlin, Ody, & Kouneiher,
2003; Li, Xia, Dong, & Collins, 2022; Solway et al., 2014; Tomov,
Yagati, Kumar, Yang, & Gershman, 2020; Xia & Collins, 2021). Such
abstractions can form over time and states, serving as a foundation of
efficient and flexible learning by reducing the computational cost of
decision-making and enabling compositionality : the ability to re-arrange,
combine, and reuse abstracted policy structures in novel ways to create
new policies that can solve new tasks (Franklin & Frank, 2018; Lake,
Ullman, Tenenbaum, & Gershman, 2017).

When hierarchical representations are temporally abstracted, a se-
quence of actions are chunked together via some policy (Botvinick,
2007; Botvinick et al., 2009; Correa et al., 2023; Xia & Collins, 2021).
These action chunks can be organized by subgoals that decompose a
bigger task into smaller subtasks that are easier to solve (Diuk et al.,
2013; Eckstein & Collins, 2020). In terms of our tomato example, the
actions of preheating the oven and roasting the tomato can be chunked
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Fig. 1. Hierarchically structured decision policies and abstractions of policy information. A: In a hierarchically structured decision policy, the decision at a later time (e.g., what
action to take with a tomato) is conditional on not only the immediate state (e.g., tomato), but also other related states and actions (e.g., having preheated the oven or sliced
sandwich bread). B: Hierarchical policies can involve abstractions over time, in which a sequence of actions are chunked together via a policy, and abstractions over states, in
which actions are chunked based on similarities between state representations.
or abstracted over time and described by a policy, which can serve as
a subpolicy of a hierarchical policy for the higher-level task of making
tomato soup (Fig. 1B). Cognitive scientists have used the options frame-
work (Sutton, Precup, & Singh, 1999) from hierarchical reinforcement
learning to model temporally abstracted policies (Botvinick et al., 2009;
Xia & Collins, 2021). Unlike classic reinforcement learning (Sutton
& Barto, 2018), in which the agent samples a single action at each
time step, the options framework allows the agent to alternatively
sample a policy that it can use to generate a sequence of actions, thus
giving rise to temporal abstractions. Under this formulation, options
are temporally forward structures in which earlier states contextualize
or activate policies over later states to generate temporally abstracted
action sequences.

In state abstractions, similar states are grouped to form compressed
representations of the full state space (Abel, Arumugam, Lehnert, &
Littman, 2018; Li, Walsh, & Littman, 2006). For example, both courses
of actions illustrated in Fig. 1A involve the tomato, which can be
compressed into a single abstract state representation (Fig. 1B). Recent
work has shown that humans learn compressed policies over states to
jointly maximize reward and representation efficiency (Lai & Gersh-
man, 2021, 2024; Lai, Huang, & Gershman, 2022). State abstractions
not only result in lower computational costs, but they are also essential
to humans’ ability to transfer knowledge between state components
shared by related tasks and contexts (Collins, Cavanagh, & Frank, 2014;
Collins & Frank, 2013, 2016; Lehnert, Littman, & Frank, 2020). In our
example, the skill of slicing tomatoes can be further shared through the
abstract tomato state with related tasks such as making a pizza, which
may require sliced tomatoes as toppings.

Despite abundant evidence for temporal and state abstractions in
human decision-making, it remains unclear how these abstractions are
learned and how they shape the representations of hierarchical poli-
cies. How does a person learn to make tomato soups and sandwiches
from knowing nothing about cooking? Is this learning top-down (start
learning from the top of the hierarchy, e.g. with the overall structure
of soup recipes and sandwich recipes) or bottom-up (learn the low-
level policies for individual steps before the hierarchical structure,
e.g. slicing tomatoes and turning on the oven)? How are the learned
hierarchical policies represented to facilitate transferring the skill of
slicing tomatoes from the task of making a sandwich to the task
of making a pizza? At the core of hierarchy and abstractions is the
compression of policy information over time and states, but we lack a
2 
satisfactory understanding of how compression supports hierarchy at
the algorithmic level. How do temporal and state abstractions interact
with each other to generate hierarchically structured decisions? How
does compression support the learning and construction of hierarchical
policies? How are hierarchies represented in the mind to enable transfer
and composition between policies in structurally related tasks?

To address these questions, we used an experimental protocol that
extends the paradigm of Xia and Collins (2021) and Li et al. (2022)
to characterize how humans develop and compose hierarchical rep-
resentations to guide behavior during trial-by-trial learning from de-
terministic feedback. Prior work has shown that humans can learn
hierarchically structured policies and compose them to form new poli-
cies by transferring between contexts (Xia & Collins, 2021) without
catastrophic forgetting of existing policy representations (Li et al.,
2022) in this task. However, existing computational frameworks do not
provide a satisfactory account on the algorithmic level for how these
hierarchical structures are learned. Current models also cannot explain
apparent knowledge transfer effects in some situations where the new
rule is different and no transfer is expected. Specifically, they fail to
qualitatively capture the transfer effect between different test structures
(denoted as V1 and V2 in the current work) observed by Li et al. (2022),
suggesting that a more concrete theory of how humans learn and
represent hierarchical decision policies may be crucial to understanding
how they compose policy structures to transfer efficiently between
related problems.

Building on previous findings, we incorporated novel structural de-
signs with robust controls to further investigate how state and temporal
abstractions shape the learning of hierarchical policies. Specifically, we
ask two questions about how complex decision structures are learned
and represented: how do humans learn hierarchical structures from
scratch using state abstractions and how are these learned represen-
tations ordered temporally? We propose that humans construct hierar-
chical policies in a bottom-up fashion: they start by learning simpler
policies with efficient state abstractions, which are gradually expanded
into more complex structures over learning. To evaluate the impact of
this previously overlooked meta-learning effect on behavior, we devel-
oped a meta-learning model and compared it to the fully hierarchical
model of Xia and Collins (2021) on human choice data. Additionally,
we tested two alternative hypotheses for how temporal abstractions
are ordered in learned hierarchical policy representations: whether ear-
lier states contextualize policies over later states (temporally forward,
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Fig. 2. The task paradigm. A: Participants learned to unlock two nested chests (gold/silver in stage 1 followed by red/blue in stage 2) by finding the correct keys through
trial-and-error via deterministic feedback. They could only proceed to the next stage (pseudo-randomly determined) after selecting the correct key. B, C: The experiment consisted
of 12 blocks, with 32–60 trials in the first two blocks and 32 trials in each following block. The hierarchically structured stimulus-action mapping changed every block without
any explicit cues: the correct key to the inner chest depended on the outer chest’s color and the block structure. In the training phase (Blocks 1–6), the block structure alternated
between two hierarchical structures illustrated on the left. In each test block (Block 7 or 11), it switched to one of V1, V2, and V3, which are illustrated on the right. All three
test block versions shared the stage 1 contingencies of the first training structure, with modified stage 2 contingencies designed to test how participants transfer and recompose
knowledge. Seven different conditions defined by test block combinations between Blocks 7 and 11 were tested across participants. D: Actions can be chunked into meta-actions
over time (from stage 1 to stage 2) or over states (stage 1 stimuli). Compared to the first training structure, the test structures included partially (V1) or fully (V2 and V3) different
meta-actions over time; meta-actions over states learned in training were only preserved in V3, among all test structures. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
which was assumed by Xia & Collins, 2021) or vice versa (temporally
backward) by fitting models with corresponding representation struc-
tures to human behavior. Coupling behavioral evidence with insights
from computational cognitive modeling, we formulated two algorith-
mic architectures to account for how humans utilize compression to
learn hierarchically structured decision policies, and how these struc-
tures are represented to enable efficient and flexible learning, transfer,
and composition.

2. Methods

2.1. Task

We tested 1026 human participants on a decision-making task
where they could learn, transfer, and recompose multiple sets of hi-
erarchical policies (Fig. 2). Our experimental protocol extended our
prior task (Li et al., 2022; Xia & Collins, 2021) to include a novel
test structure and reduce interference between the action spaces of
both stages (allowing us to test new hypotheses), and to use realistic
stimuli (making the task more intuitive and engaging). A demo version
of the experiment is provided in the ‘‘Data and code availability’’
section at the end of the manuscript. Each trial consisted of two stages,
represented by two pairs of treasure chests (gold and silver in stage
1; red and blue in stage 2) that could be unlocked by two sets of
four keys (denoted as K1–K4 and K5–K8; Fig. 2A). Participants learned
3 
the correct key for each chest through trial-and-error: they had to
keep trying different keys until finding the correct one. Unlocking the
chest in stage 1 led to stage 2, and unlocking the stage 2 chest led to
positive feedback, followed by the next trial. The experiment included
12 blocks, spanning the training phase (Blocks 1–6), post-training tests
(Blocks 7 and 11), and post-training control blocks (Fig. 2B). There
were 32–60 trials (up to performance criteria) in Blocks 1–2 and 32
trials in each following block. Participants were not explicitly informed
of the deterministic reward contingencies of the task. There were
explicit block boundaries (an optional 20-second break between every
two consecutive blocks), but no instructions or cues for whether the
reward contingencies changed between blocks — participants had to
infer these changes through trial and error; see task demo in ‘‘Data and
code availability’’ for full instructions.

Five different hierarchically structured chest-key (stimulus-action)
mappings were used in the experiment: two in training and con-
trol blocks that all participants experienced, and three in test blocks,
denoted as V1, V2, and V3 (Fig. 2C), that were assigned across partic-
ipants (see below). Compared to the first training structure, all three
versions of test structures had the same stage 1 contingencies, with
different degrees of similarity in stage 2: they shared different types
of meta-actions. These test structures were carefully designed to break
learned temporal and state abstractions in different ways to test how
learning and transfer would be impacted. We define a meta-action
as a pair of actions chunked together either over time or over states
(Fig. 2D). A meta-action over time abstracts two atomic actions into a
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Table 1
Comparison between test block versions.

Number of new
meta-actions

V1 V2 V3

Over time 2 4 4
Over states 2 2 0

policy that specifies a compound action sequence spanning both stages
(analogous to chunking the actions of preheating the oven and roasting
the tomato in Fig. 1B); a meta-action over states abstracts two actions in
stage 2 based only on the stage 2 stimulus, regardless of the stimulus
(state) in stage 1 (analogous to chunking the actions of roasting and
slicing the tomato in Fig. 1B). V1, but not V2 or V3, preserved two
of the four meta-actions over time (K1-blue-K6 and K2-red-K7) in the
first training structure; V3 preserved the meta-actions over states (K5–
K7 and K6–K8) while V1 and V2 did not (Table 1). Every participant
learned the same training and control blocks (Blocks 1–6, 8–10, and
12; colored black-and-white in Fig. 2B). The only difference between-
participant was the task condition or test block combination: different
groups of participants learned different test structure versions in the
test blocks (Blocks 7 and 11), denoted by the test block combinations:
V1-V1, V1-V2, V1-V3, V2-V1, V2-V2, V3-V1, and V3-V3.

Our task paradigm extends that used by Xia and Collins (2021) and Li
et al. (2022) to enable the novel Test V3 design in addition to V1 and
V2, which was not possible in the old paradigm due to its limited action
space in stage 2 (the same four keys controlled by the right hand were
shared by both stages and the correct action never repeated between
stages). To achieve this, we separated the action spaces between stages
(left hand for stage 1 and right hand for stage 2), which also allowed
us to investigate the policies human participants used in stage 2 with
minimal interference from their policies in stage 1. Additionally, our
paradigm features more engaging stimuli and more logical relations
(unlocking treasure chests with keys) than the old paradigm (associ-
ating geometric shapes with key presses). Additional details about the
task paradigm are described in Supplementary Methods.

2.2. Data

All participants were recruited online through the Research Par-
ticipation Program at the University of California, Berkeley. In total,
1026 participants completed the task across all conditions and received
credit in eligible courses for their participation. Informed consent was
obtained from all participants. The experiments were administered in
two batches with four conditions each (all combinations of V1 and V3
in Experiment 1 and all combinations of V1 and V2 in Experiment 2).
Since we did not find any significant differences in the shared V1-V1
condition, we combined the data of both experiments in our analyses
and presentation where applicable, which is more thoroughly discussed
in Supplementary Methods.

To group participants based on their learning strategies and identify
poor performers to exclude from data analysis, we applied a clustering
analysis on the trial-by-trial performance data using the k-means algo-
rithm. Compared to conventional performance-based exclusion criteria
adopted by previous work (Li et al., 2022; Xia & Collins, 2021),
which classified participants into two classes (below- and above-chance
performers), our approach could theoretically identify more than two
performance patterns that might have been present in the data. We
clustered participants into three groups based on their trial-by-trial
performance in the training phase for each experiment, which is further
justified in Supplementary Methods.

In all our analyses, performance was measured by the number of
key presses made by the participant until reaching the correct choice
in each stage, as they had to keep pressing different keys until reaching
the correct one to proceed to the next stage (Fig. 3A). All results held
qualitatively when we used the accuracy of the first key press in each
4 
stage as the performance metric instead. In stage 1, no explicit feedback
was provided when a wrong key was pressed; upon a correct key press,
the task transitioned into stage 2. In stage 2, a ‘‘wrong key’’ message
was shown upon a wrong key press and an open chest filled with
treasures was displayed when the correct key was selected. The lack of
explicit reward signals in stage 1 maintained the hierarchical structure
of the trial so that explicit reward signals were only observed at the
end of each trial (Xia & Collins, 2021). The number of key presses
quantified the amount of errors made by the participant in each stage:
the more key presses, the more errors. Therefore, this metric is inversely
correlated to how optimal the participant’s policy was, making it an
informative measure of task performance. Based on the observation
that participants rarely repeated the same action on the same trial (the
average frequency of repeating actions was 0.007 press per trial across
all participants), we defined random performance level at 2.5 presses,
which is the average of 1, 2, 3, and 4: if the participant did not make
any errors, they would make 1 press; if they tried different keys without
repeats, they would make up to 4 presses.

2.3. Models

We compared pairs of computational cognitive models by fitting
them to human choice data to answer two questions about human
learning. First, to understand how humans learn the hierarchical struc-
tures without prior knowledge about them, we tested the fully hier-
archical model developed by Xia and Collins (2021) against a new
meta-learning model, which incorporates the hierarchical model as one
module. While the hierarchical model assumes full knowledge about
the hierarchical policy structure from the beginning of learning, the
meta model learns posterior probabilities of sampling two flat policies
in addition to the hierarchical policy via Bayesian inference, which
can capture gradual shifts from relying on flat, compressed policies to
mastering more complex, hierarchical structures (illustrated in Fig. 4A).
Second, to test the temporal order in which humans represent learned
hierarchical structures, we compared the meta-learning model with
temporally forward structures, in which earlier state information con-
textualizes policies over later state information, to the meta-learning
model with temporally backward structures, in which later state infor-
mation contextualizes policies over earlier state information (illustrated
in Fig. 5A, B).

2.3.1. Hierarchical model
Algorithm 1 outlines the hierarchical model, which extends

prior work (Xia & Collins, 2021) by representing lower-level policies
using task-sets instead of options without changing model behavior.
The benefits of this improvement were two-folded: first, it allowed
us to derive analytical likelihoods and fit the model to trial-by-trial
human choice data by optimizing likelihoods and obtain best-fitting
parameters (contrary to Xia & Collins, 2021); second, it improved
the computational efficiency of the model by reducing one level of
abstraction. Since our current work focuses on modeling choices in
stage 2 conditioning on choices in stage 1, stage 1 policies are skipped
in our models. However, stage 1 policies can be modeled independently
from stage 2 using a similar algorithm (Xia & Collins, 2021).

Each policy chunk is represented by a tabular task-set, denoted as
𝑇𝑆, which stores the value of each action in each state, encoded by the
identity of the stimulus in the chunked stage (stage 2 for the forward
structure and stage 1 for the backward structure; Line 2). Task-sets are
contextualized by a combination of the block number and the identity
of the stimulus that serves as the context of the policy chunks (stage 1
for the forward structure and stage 2 for the backward structure; Line
2). The model tracks a repertoire of task-sets and learns the probability
of sampling each task-set in each context, which is updated using Bayes’
rule over learning. When a new context is encountered, the model
creates a new task-set with uninformative values. The initialization of
task-set priors in a new context follows a Chinese restaurant process
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Algorithm 1 Fully hierarchical model
Require: Parameters 𝜃 = {𝜂, 𝛽, 𝛼, 𝜖}
1: for 𝑡 = 1, 2, ..., 𝑇 do ⊳ Skip stage 1
2: Observe context 𝑐𝑡 and state 𝑠𝑡
3: Compute alternative context in the same block 𝑐′𝑡
4: if 𝑐𝑡 is new then ⊳ New context
5: Initialize prior Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡) ∝

∑

𝑐 Pr(𝑇𝑆𝑖 ∣ 𝑐 ; 𝑡) for all 𝑇𝑆𝑖
6: Create a new task-set 𝑇𝑆𝑐𝑡 with uninformative values
7: Pr(𝑇𝑆𝑐𝑡 ∣ 𝑐𝑡 ; 𝑡) =

𝛼
𝛼+1 ⊳ CRP

8: Normalize Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡) ←
Pr(𝑇𝑆𝑖 ∣𝑐𝑡 ; 𝑡)

𝛼+1
9: end if
0: while 𝑟𝑡 = 0 do
1: Add context-pairing bias based on 𝑐′𝑡 to task-set priors for 𝑐𝑡

12: Sample a copy of 𝑇𝑆𝑡 based on Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡) for all 𝑇𝑆𝑖
13: for 𝑎 that has been tried on this trial do
14: 𝑇𝑆𝑡(𝑠𝑡, 𝑎 ; 𝑡) = −∞
15: end for
16: 𝜋 = softmax

(

𝛽 ⋅ 𝑇𝑆𝑡(𝑠𝑡, 𝐴 ; 𝑡)
)

⋅ (1 − 𝜖) + 1
|𝐴| ⋅ 𝜖

7: Sample action 𝑎𝑡 ∼ 𝜋 and observe reward 𝑟𝑡
8: if 𝑟𝑡 = 1 then ⊳ Bayesian update
9: Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡 + 1) ∝ Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡) ⋅ 𝜋(𝑎𝑡) for all 𝑇𝑆𝑖
0: else
1: Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡 + 1) ∝ Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡) ⋅

(

1 − 𝜋(𝑎𝑡)
)

for all 𝑇𝑆𝑖
2: end if
3: Re-sample 𝑇𝑆𝑡 based on Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡 + 1) for all 𝑇𝑆𝑖
4: 𝑇𝑆𝑡(𝑠𝑡, 𝑎𝑡 ; 𝑡) ← 𝑇𝑆𝑡(𝑠𝑡, 𝑎𝑡 ; 𝑡) + 𝜂 ⋅

(

𝑟𝑡 − 𝑇𝑆𝑡(𝑠𝑡, 𝑎𝑡 ; 𝑡)
)

25: end while
26: end for

(CRP) parameterized by 𝛼 (Pitman, 2006): the task-sets that have been
successful in previous contexts have higher priors than historically less
successful task-sets, while the prior on the new task-set is determined
by 𝛼 (Lines 5–8). As a result, the model is able to reuse previously
learned task-sets when a structure re-occurs and learn a new one for
an unfamiliar structure, as illustrated in Figs. 5C, 6B, and 7A.

In addition to the current context, the model identifies an alterna-
tive context 𝑐′, which is the context defined by the current block and
the alternative state. A context-pairing bias is added to the task-set
probabilities to model the affinity between task-sets that have co-
occurred in the same block — this allows the model to leverage the
task-set probabilities it has learned in the alternative context within the
same block to inform task-set selection in the current context (Line 11).
The bias 𝑏𝑇𝑆𝑖 ,𝑇 𝑆𝑗

is proportional to the number of times two task-sets,
𝑇𝑆𝑖 and 𝑇𝑆𝑗 have been paired in the same block:

𝑏𝑇𝑆𝑖 ,𝑇 𝑆𝑗
∝

∑

block

∑

𝑐,𝑐′
1𝑇𝑆𝑖=argmaxPr(𝑇𝑆∣𝑐 ; 𝑡) ⋅ 1𝑇𝑆𝑗=argmaxPr(𝑇𝑆∣𝑐′ ; 𝑡),

where 1𝑥 is the indicator function which takes on the value 1 if 𝑥 is
true and 0 otherwise. The context-pairing bias is added to the task-set
probabilities when the model is still learning the best task-set in the
current context, or when the maximum task-set probability is less than
0.5, since a task-set probability higher than 0.5 implies that this task-set
is deemed more likely than all others (Collins & Koechlin, 2012).

Pr(𝑇𝑆𝑡 ∣ 𝑐𝑡 ; 𝑡) = 𝑤𝑏 ⋅ 𝑏𝑇𝑆𝑡 ,𝑇 𝑆′
𝑡
+ (1 −𝑤𝑏) ⋅ Pr(𝑇𝑆𝑡 ∣ 𝑐𝑡 ; 𝑡),

here 𝑇𝑆′
𝑡 = argmaxPr(𝑇𝑆 ∣ 𝑐′𝑡 ; 𝑡) is the most likely task-set in the

alternative context 𝑐′ and its probability is equal to the strength of the
bias 𝑤𝑏 = Pr(𝑇𝑆′

𝑡 ∣ 𝑐
′
𝑡 ; 𝑡).

On each trial, in stage 2, the model samples a task-set according
to the task-set probabilities in the current context (Line 23). It uses
working memory to track actions that have been tried on this trial and
avoids repeating them by de-valuing them (Line 14). Then, it picks an
 f

5 
action by sampling from the softmax-transformed distribution of this
task-set with a uniform decision noise (Lines 16–17):

Pr(𝑎 ∣ 𝑐𝑡, 𝑠𝑡, 𝑇 𝑆𝑡 ; 𝑡) =
exp

(

𝛽 ⋅ 𝑇𝑆𝑡(𝑠𝑡, 𝑎 ; 𝑡)
)

∑

𝑎′∈𝐴 exp
(

𝛽 ⋅ 𝑇𝑆𝑡(𝑠𝑡, 𝑎′ ; 𝑡)
) ⋅ (1 − 𝜖) + 1

|𝐴|
⋅ 𝜖,

where 𝐴 is the action space (the set of all available actions) and 𝜖 is
the uniform noise parameter. After acting with the sampled action 𝑎𝑡,
the model observes reward 𝑟𝑡 from the environment and updates its
task-set belief probabilities (Lines 18–22) and the corresponding value
in the re-sampled task-set (Line 24).

2.3.2. Meta-learning model

Algorithm 2 Meta-learning model
Require: Parameters 𝜃 = {𝜂, 𝛽, 𝛼, 𝜖, 𝑝ℎ, 𝑤, 𝛾}
1: Initialize policy priors Pr(𝜋 ; 0) = [(1 − 𝑝𝐻 ) ⋅𝑤, (1 − 𝑝𝐻 ) ⋅ (1 −𝑤), 𝑝𝐻 ]

for 𝜋 = [𝜋𝐶1
, 𝜋𝐶2

, 𝜋𝐻 ]
2: for 𝑡 = 0, 1, ..., 𝑇 − 1 do ⊳ Skip stage 1
3: Observe context 𝑐𝑡 and alternative context 𝑐′𝑡
4: Observe state 𝑠𝑡 and alternative state 𝑠′𝑡
5: if 𝑐𝑡 and 𝑐′𝑡 are new then
6: Create a new task-set for each new context as in Algorithm 1
7: Initialize new task-set priors as in Algorithm 1 ⊳ CRP
8: end if
9: while 𝑟𝑡 = 0 do

10: Add context-pairing bias based on 𝑐′𝑡 to task-set priors for 𝑐𝑡
11: Sample 𝑇𝑆𝑡 and 𝑇𝑆′

𝑡 from priors given 𝑐𝑡 and 𝑐′𝑡
12: De-value all actions that have been tried as in Algorithm 1
13: if backward then
14: 𝜋𝐶1

= softmax
(

𝛽 ⋅
(

𝑇𝑆𝑡(𝑠𝑡, 𝐴 ; 𝑡) + 𝑇𝑆𝑡(𝑠′𝑡 , 𝐴 ; 𝑡)
)

∕2
)

15: 𝜋𝐶2
= softmax

(

𝛽 ⋅
(

𝑇𝑆𝑡(𝑠𝑡, 𝐴 ; 𝑡) + 𝑇𝑆′
𝑡 (𝑠𝑡, 𝐴 ; 𝑡)

)

∕2
)

16: else
17: 𝜋𝐶1

= softmax
(

𝛽 ⋅
(

𝑇𝑆𝑡(𝑠𝑡, 𝐴 ; 𝑡) + 𝑇𝑆′
𝑡 (𝑠𝑡, 𝐴 ; 𝑡)

)

∕2
)

8: 𝜋𝐶2
= softmax

(

𝛽 ⋅
(

𝑇𝑆𝑡(𝑠𝑡, 𝐴 ; 𝑡) + 𝑇𝑆𝑡(𝑠′𝑡 , 𝐴 ; 𝑡)
)

∕2
)

9: end if
0: 𝜋𝐻 = softmax

(

𝛽 ⋅ 𝑇𝑆𝑡(𝑠𝑡, 𝐴 ; 𝑡)
)

⊳ Hierarchical policy
1: 𝑁𝜋 ←

(

1 − 𝛾) ⋅𝑁𝜋 + 𝛾 ⊳ Forget
2: 𝑁𝜋

(

𝑎𝑡 ∣ 𝑐𝑡, 𝑠𝑡
)

← 𝑁𝜋
(

𝑎𝑡 ∣ 𝑐𝑡, 𝑠𝑡
)

+ 1 ⊳ Update count
3: 𝐿𝜋 (𝑎𝑡 ∣ 𝑐𝑡, 𝑠𝑡

)

= 𝑁𝜋 (𝑎𝑡 ∣𝑐𝑡 ,𝑠𝑡)
∑

𝑎∈𝐴 𝑁𝜋 (𝑎∣𝑐𝑡 ,𝑠𝑡)
⊳ Compute likelihood

24: 𝑝𝑡(𝜋) = softmax
(

𝛽meta ⋅ Pr(𝜋 ; 𝑡)
)

5: 𝜋𝑚 =
(
∑

𝑖∈{𝐶1 ,𝐶2 ,𝐻} 𝑝𝑡(𝜋𝑖) ⋅ 𝜋𝑖
)

⋅ (1 − 𝜖) + 1
|𝐴| ⋅ 𝜖 ⊳ Meta-policy

26: Sample action 𝑎𝑡 ∼ 𝜋𝑚 and observe reward 𝑟𝑡
27: Update task-set belief probabilities as in Algorithm 1
28: if 𝑟𝑡 = 1 then ⊳ Bayesian update
29: Pr(𝜋 ; 𝑡 + 1) ∝ Pr(𝜋 ; 𝑡) ⋅ 𝐿𝜋 (𝑎𝑡 ∣ 𝑐𝑡, 𝑠𝑡)
30: else
31: Pr(𝜋 ; 𝑡 + 1) ∝ Pr(𝜋 ; 𝑡) ⋅

(

1 − 𝐿𝜋 (𝑎𝑡 ∣ 𝑐𝑡, 𝑠𝑡)
)

32: end if
33: Update value in resampled task-set in 𝑐𝑡 as in Algorithm 1
34: end while
35: end for

The meta-learning model, outlined in Algorithm 2, extends the
fully hierarchical model to include two compressed policies over states
(Fig. 4A). To support the meta-learning mechanism, three additional
parameters (𝑝𝐻 , 𝑤, and 𝛾) are included in the model: 𝑝𝐻 defines the
prior probability of the hierarchical policy and 𝑤 represents the weight
of the compressed policy over stage 1 against the compressed policy
over stage 2 (Line 1). During learning, these belief probabilities over
policies are updated using Bayes’ rule (Lines 28–32). The meta-learning
model tracks the number of times each action is sampled given the state
for each policy, denoted by 𝑁𝜋 (𝑎 ∣ 𝑐, 𝑠) (Line 22), based on which the
ikelihood of sampling each policy is computed (Line 23). 𝛾 controls
he forgetting rate of learned policy sampling frequency distributions
or the meta-learning mechanism (Line 21).
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The meta model implements an off-policy representation of the com-
pressed policies — its target policy is hierarchical, though it computes
the compressed policies by averaging over corresponding stages of the
hierarchical policy at decision time (Lines 13–19). To combine these
policies into a meta-policy, the model computes an average between
them weighted by the softmax-transformed policy belief probabilities
with a fixed inverse temperature 𝛽𝑚𝑒𝑡𝑎 = 5 (Lines 24–25).

2.3.3. Temporally forward and backward representations
To test alternative hypotheses about the temporal order of state

representations in the learned hierarchical policies, we created two
versions of the meta-learning model that implement the temporally
forward and backward representations, respectively. Both models have
the same complexity (numbers of parameters and computational mech-
anisms), and they only differ in how the repertoire of learned task-sets,
or policy chunks, are contextualized or indexed. In Algorithm 2, the
context 𝑐𝑡 is defined by the identity of the stage 1 stimulus in the
forward model and stage 2 stimulus in the backward model (Line 3),
while the state 𝑠𝑡 is defined by the identity of the stage 2 stimulus in
the forward model and stage 1 stimulus in the backward model. The
computation of compression over each stage is adjusted accordingly to
the temporal representation order (Lines 13–19).

2.3.4. Model fitting and parameter estimation
All models were fitted at the participant level using maximum likeli-

hood estimation with the global optimization function
differential_evolution provided by the optimize module
of the SciPy library in python. The optimization objective was the
negative log-transformed likelihood of the data given the model pa-
rameters, abbreviated as ‘‘model likelihood.’’ The model likelihood was
computed based on the model algorithm, marginalizing over all task-
sets whenever a task-set was sampled. For example, in Algorithm 1, the
6 
model likelihood on trial 𝑡 was calculated as:

L(𝑎𝑡 ∣ 𝑐𝑡, 𝑠𝑡 ; 𝑡) = − log
∑

𝑖
Pr(𝑇𝑆𝑖 ∣ 𝑐𝑡 ; 𝑡) ⋅ 𝑇𝑆𝑖(𝑠𝑡, 𝑎𝑡 ; 𝑡).

2.3.5. Model comparison
We compared pairs of models using the Akaike Information Crite-

rion (AIC) when model complexity differed, and the log-transformed
model likelihood otherwise. Additionally, we validated the fitted mod-
els against human behavior by re-simulating choice data with the fitted
parameters.

3. Results

3.1. Human learning performance

Observed human behavior qualitatively replicated findings in prior
studies where applicable (Li et al., 2022; Xia & Collins, 2021). Specif-
ically, the error rates and types were qualitatively comparable to
previous results obtained under the old paradigm during the training
phase and test V1 and V2 blocks. Same as Li et al. (2022), we found
no significant differences between V1 and V2 in either test block,
despite transfer effects between Blocks 7 and 11 (V1-V2 and V2-V1).
Quantitative comparisons could not be drawn due to differences in the
available actions in stage 2 between the new and old paradigms (in the
old paradigm, the available actions in stage 2 were the three incorrect
actions in stage 1, while in our paradigm, they are four actions specific
to stage 2).

Using an unsupervised k-means clustering algorithm, we divided the
PCA-transformed individual learning curves over Blocks 1–6 (number
of presses in each stage on each trial of the training phase; see Methods)
into three groups (Fig. 3B): random performers (n=181), mid perform-
ers (n=254), and best performers (n=591). The learning patterns of
these clusters were distinct: the random performers did not learn to
Fig. 3. Summary of human behavior. A: Task performance was measured by the number of key presses the participant made until reaching the correct choice in each stage,
averaged over the first 10 trials of each block. On each trial, the participant had to press the correct key to advance from stage 1 to stage 2 (without explicit wrong key feedback)
or from stage 2 to the next trial (with a ‘‘wrong key’’ message when a wrong key was selected). The number of key presses made in each stage quantified the amount of errors in
the participant’s choices and, by proxy, the deviation between their policy and the true task structure. B: The learning curves of all participants were grouped by an unsupervised
k-means algorithm into 3 clusters, which corresponded to whether the participants learned to perform better than randomly guessing without replacement (chance) in both stages:
the random performers (n=181) were no better than chance in either stage, indicating low task involvement, the mid performers (n=254) were only better than chance in stage
2, and the best performers (n=591) learned to perform better than chance in both stages. C: Across conditions in stage 2, humans made more key presses on average in the first
test block (Block 7) compared to the end-of-training baseline (average between Blocks 5 and 6), with significantly less increase in V3 than V1. D: Post-training learning curves for
all test conditions. In all figures, we denote p< 0.001 as ***, p< 0.01 as **, p< 0.05 as *, and p> 0.05 as n.s. All error bars represent one standard error of the mean.
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perform better than chance in the training phase, the mid performers
only exceeded chance performance in stage 2 but not stage 1, and
the best performers learned to perform better than chance in both
stages. Although both the mid and best performers learned stage 2,
the mid performers made consistently more error (around 0.2 more
key press per trial) than the best performers, suggesting that effectively
learning stage 1 facilitated learning in stage 2. In the main text, we will
only show results of the best performers. Corresponding results of the
mid performers were qualitatively consistent with the main conclusions
and included in Supplementary Figures. The random performers were
excluded from any further analyses.

Human participants made more errors in the first test block (Block
7) than the end-of-training baseline, which was defined as the average
performance on the first 10 trials of Blocks 5 and 6, in all three
versions, replicating the negative transfer effect of previously learned
policies shown by Xia and Collins (2021) (Fig. 3C for best performers,
Fig. B.1B for mid performers). Notably, the increase in the number of
key presses from baseline in V3 was significantly lower than in V1,
and lower than in V2 on average although not statistically significant
(two-tailed t-test t=2.1 and p = 0.037 between V1 and V3 and t=1.8
and p = 0.078 between V2 and V3). The significant difference was
only present in one of the two V1 samples of both experiments when
tested independently (t=1.0 and p = 0.32 for Experiment 1 with n=68,
and t=2.5 and p = 0.013 for Experiment 2 with n=78). This weak
iscrepancy might suggest that V3’s consistent meta-actions over states
K6–K8 and K5–K7) with the training structures have facilitated new
earning and transfer. On the other hand, due to the lack of discrepancy
etween V1 and V2 (two-tailed t-test t=0.28 and p = 0.78), there was

no evidence that preserving meta-actions over time (K1–K6 and K2–K7)
facilitated transfer, which replicated the findings of Li et al. (2022).
Taken together, these results imply that human behavior was more
strongly driven by action chunking over states than over time.

Performance improved between both test blocks with repeating test
structures (two-tailed t-test t=3.3 and p = 1.3 × 10−3 for V1-V1, t =2.5
and p = 0.015 for V2-V2, and t =5.6 and p = 6.4×10−7 for V3-V3),
ndicating transfer of learned structures (Fig. 3D for best performers,
ig. B.1A for mid performers). Interestingly, performance in the second
est block was not significantly different between non-repeating and
epeating combinations of V1 and V2 (two-tailed t-test t = −0.090

and p = 0.93 between V1-V1 and V1-V2, and t = −1.3 and p = 0.18
between V2-V1 and V2-V2), while it was significantly worse in V3-V1
than V3-V3 (two-tailed t-test t =3.9 and p = 1.6 × 10−4). These results
suggest that some transfer of learned structures might have occurred
between V1 and V2, since participants showed similar amounts of
performance improvement between test blocks when V1 was followed
by V1 compared to V2, as well as when V2 was followed by V2
compared to V1. However, no transfer was observed between V1 and
V3 since performance only improved in V3-V3 but not V3-V1.

3.2. Building a mechanistic understanding of the state and temporal ab-
stractions underlying human choice behavior

The behavioral analyses above presents evidence for compressed
action representations over states, which imply state abstractions. How-
ever, we lack a mechanistic understanding of how these abstractions
contribute to learning. How do state abstractions change over learning?
What is their role in the construction of hierarchically structured poli-
cies that eventually drive behavior? In this subsection, we introduce an
algorithmic account for how compressed policies over states unfold into
hierarchical policies and how the temporal structure of state abstrac-
tions gives rise to efficient transfer by enabling compositionality. Using
cognitive process models, we show that our framework can explain the
error patterns in human behavior, which alternative accounts fail to.
 t
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3.2.1. Modeling the emergence of hierarchical policies
Compressed policies can form over the state space of either stage

1 or stage 2 (Fig. 4A). In a fully compressed policy over stage 1, the
state in stage 2 is represented independently from stage 1 stimulus
(e.g., gold-red and silver-red are compressed into red), whereas a fully
compressed policy over stage 2 assumes that the state is independent
from stage 2 stimulus (e.g., gold-red and gold-blue are compressed into
gold). Compressing over states in different ways leads to distinct meta-
actions (in the first training structure, K5–K7 and K6–K8 if compressed
over stage 1, and K5–K6 and K7–K8 if compressed over stage 2), which
result in different wrong choices (e.g., K7 or K6 instead of K5). Thus,
choices made on each trial can be classified into four types: correct
choices, compression over stage 1 errors, compression over stage 2
errors, and other errors (example illustrated in Fig. 4B). In Block
1, compression errors, especially over stage 1, dominated the wrong
choices made by humans on the first attempt of each trial (Fig. 4C for
best performers, Fig. B.1C for mid performers), suggesting that humans
relied on compressed policies in early learning.

Based on this observation, we hypothesized that humans devel-
oped compressed policies into hierarchically structured policies over
learning. To test this hypothesis, we fitted two models to human
choice data: a fully hierarchical model that learned hierarchical policies
without compression, and a meta-learning model that learned posterior
probabilities of all compressed and hierarchical policies using Bayesian
inference (Fig. 4A). The meta model started learning with a parameter-
ized prior on the hierarchical structure; its priors on the compressed
structures were determined by another fitted parameter. It fitted to
human choices significantly better (two-tailed t-test t = 24, p< 10−4)
han the fully hierarchical model based on the AIC (Fig. B.6A). Most
arameters were recoverable, despite noisy recovery of the forgetting
ate 𝛾 and some value ranges of the learning rate 𝜂 and hierarchical
rior 𝑝𝐻 (Fig. B.6B). The meta model successfully produced the er-
or distribution in early human choices, while the hierarchical model
ailed to, both at the group level (Fig. 4C) and at the individual level
Fig. B.6C). Due to the complexity of our models, we do not aim to
xplain nuanced individual learning differences; rather, the focus of our
nalyses is to capture qualitative group behavioral patterns. The meta
odel predicted that humans started learning with a higher preference

or over-simplified, compressed policies, and slowly switched to making
hoices based on hierarchical policies instead (Fig. 4D), exceeding the
eiling performance of the compressed policies (Fig. B.7) or a mixture
f the three policies without the Bayesian learning process (Fig. B.8).
his gradual meta-learning process allowed the meta model to repro-
uce error patterns in human choices that drove learning, particularly
he imbalance in error types and the decrease in compression errors
hroughout learning (Fig. 4E for best performers, Fig. B.1D for mid
erformers).

.2.2. Modeling the representation structure of hierarchical policies
Building on the meta-learning of hierarchically structured policies,

e further investigated how these policies were represented and how
tate abstractions shaped these representations. Compressed policies
ver states can unfold into hierarchical policies in two ways, depending
n which type of state abstractions dominates: compressed policies
ver stage 2 use the stage 1 stimulus (gold/silver) to contextualize
ction chunks, while compressed policies over stage 1 use the stage 2
timulus (red/blue). These action chunks can expand into policy chunks
y incorporating the stimulus in the compressed stage (Fig. 5A, B). In
he former case, the hierarchy is constructed in a temporally forward
anner, where earlier information (stage 1 stimulus) contextualizes
olicy chunks defined on later information (stage 2 stimulus). On
he contrary, when later information (stage 2) contextualizes policy
hunks defined on earlier information (stage 1), the hierarchy follows
temporally backward organization. By design, V3 preserved the policy

hunks learned in training if the hierarchical policy structures were

emporally backward, but not if they were temporally forward: policy



J.-J. Li and A.G.E. Collins Cognition 254 (2025) 105967 
Fig. 4. Compressed policies unfolded into hierarchical policies via meta-learning. A: We modeled two types of compressed policies and a hierarchical policy, which used information
from different stages to choose in stage 2. The policy that was compressed over stage 1 disregarded information in stage 1 when sampling an action in stage 2 — its stage 2 policy
depended solely on the stage 2 stimulus. On the other hand, the compressed policy over stage 2 depended solely on stage 1 to act in stage 2. The hierarchical policy was optimal
for the task structure — it used both stages to inform action selection in stage 2. We compared a fully hierarchical model (i.e., the hierarchical policy) to a meta-learning model
that used Bayesian inference to learn the probability of sampling each of the three policies. B: Choices in stage 2 can be classified into 4 types: correct choices, compression over
stage 1 errors (indicating stage 1 was disregarded), compression over stage 2 errors (indicating stage 2 was disregarded), and other errors. C: In early learning (Block 1), wrong
presses made by humans were dominated by compression errors, especially compression over stage 1 errors, which was explained by the meta model but not the hierarchical
model. D: The meta model’s learned policy probabilities over training indicated a shift from favoring compressed policies to relying on the hierarchical policy. E: The qualitative
error patterns in human learning were successfully captured by the meta model but not the hierarchical model. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
chunks learned during training (the second chunk from each training
structure, whose borders are highlighted in Fig. 5A) could be composed
to solve V3 only if the structures were temporally backward.
8 
As a result, upon encountering V3, a model that implemented
temporally forward structures created a new set of policy chunks to
represent the hierarchical policy, while a backward structured model
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Fig. 5. The learned hierarchical policies in stage 2 followed a temporally backward structure. A: Temporally forward structures use earlier information (stage 1) to contextualize
policy chunks defined over later information (stage 2), while temporally backward structures use later information (stage 2) to contextualize policy chunks over earlier information
(stage 1). Temporally backward structures enable the policy for V3 to be composed by re-contextualizing chunks learned during training, while temporally forward structures do
not allow such composition. We tested two models with temporally forward and backward structures, respectively. B: Both models learned two policy chunks to represent each
block context, which could be reused between blocks. The models could create new policy chunks upon a new block structure. C: The forward model created new policy chunks
upon first learning V3, while the backward model efficiently recomposed learned policy chunks to represent its V3 policy. D: Fitted to human choice data, the backward model
had significantly higher likelihoods than the forward model in all three test block combinations containing V3. E: Overall, the backward model captured human behavior better
than the forward model, particularly in the test blocks (Blocks 7 and 11).
flexibly composed learned policy chunks (Fig. 5C). All visualizations
similar to Fig. 5C in this manuscript illustrate the most likely policy
chunk (task-set) selections made in model simulations with best-fit
parameters to human data on the last trial of each block. This enabled
the backward model to learn and transfer structures more efficiently
than the forward model in the V3-V3, V1-V3, and V3-V1 conditions.
When fitted to human choice data, the backward model produced
higher likelihoods than the forward model in all conditions (Fig. 5D;
two-tailed t-test t = −7.1 and p = 2.4 × 10−9 for V3-V3, t = −2.7
and p = 9.9 × 10−3 for V1-V3, and t = −2.7 and p = 7.9 × 10−3 for
V3-V1). The better fit to human behavior of the backward model also
9 
manifested in its ability to capture the qualitative pattern that humans
were less prone to errors (they make fewer presses) when learning
V3 than V1 (Fig. 5E). Consistent results were observed in the mid
performers (Fig. B.2).

In addition to the faster learning of V3, temporally backward struc-
tures could also account for the transfer between V1 and V2 observed in
human behavior (Fig. 3D). When viewed as temporally backward, the
hierarchical structures of V1 and V2 shared the same policy chunks,
which was not true for temporally forward structures (Fig. 6A). There-
fore, the backward model could compose learned policy chunks be-
tween V1 and V2, while the forward model needed to create a new
Fig. 6. Temporally backward structures enabled efficient composition between V1 and V2. A: Temporally backward structures allowed for recomposition of learned policy chunks
between V1 and V2, while temporally forward structures did not. B, C: The forward model created two sets of structures to represent V1 and V2, while the backward model could
efficiently compose one set of policy chunks to represent both. D: Fitted to human choice data, the backward model had higher likelihoods than the forward model in both V1-V2
and V2-V1. E: The backward model reproduced the performance improvement between V1 and V2 (in Blocks 7 and 11), which the forward model failed to.
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Fig. 7. The forward and backward models both successfully captured human behavior
in repeating V1 and V2 test conditions. A: Both models created new policy chunks upon
V1 or V2, which were reused when the same test structure repeated. B: The likelihoods
of the forward and backward models were not significantly different. C: Both models
reproduced the performance improvement between repeating V1 and V2 blocks.

set of policy chunks upon learning each test structure (Fig. 6B). The
backward model fitted human choices better in terms of both the
likelihood metric (Fig. 6C) and capturing the qualitative pattern of
performance improvement between V1 and V2 in human behavior
(Fig. 6D). The backward model also matched human behavior better
qualitatively in the mid performers, though there were no significant
differences in model likelihoods (Fig. B.2).

The forward and backward models generated indistinguishable pre-
dictions on V1-V1 and V2-V2, where both models created new policy
chunks upon learning the test block for the first time and reused
them when the test block repeated (Fig. 7A). When fitted to human
data, the forward and backward models were indistinguishable by the
likelihood metric (Fig. 7B). Both models successfully accounted for the
performance improvement between test blocks in V1-V1 and V2-V2.

4. Discussion

Our findings highlight processes at multiple levels of abstraction
that support the acquisition and representation of hierarchically struc-
tured decision policies in a complex, dynamic learning environment.
We characterize the important role of state abstractions as building
blocks of hierarchical policies and show how their temporal structure
enables efficient learning, transfer, and composition.

Our computational framework, backed by data, provides a com-
pelling algorithmic account for the slow, bottom-up construction pro-
cess of hierarchical policies: simpler, compressed policies serve to
bootstrap complex, hierarchical structures, which emerge incremen-
tally through meta-learning. This theory bridges our understanding
of compression and hierarchy via a mechanistic description of how
the trade-off between representation efficiency and reward evolves
over trial-by-trial learning. Our results suggest that humans prioritize
representing policies efficiently through compression in early learning,
which gradually unfold into more computationally expensive structures
that maximize reward rate. In terms of the real-life example illustrated
in Fig. 1, our theory would predict that people focus on learning smaller
policies for individual cooking steps first, like slicing tomatoes, and
then build them up into larger, hierarchical recipes. This meta-cognitive
10 
process is resource-rational (Gershman, Horvitz, & Tenenbaum, 2015;
Lieder & Griffiths, 2020; Simon, 1955): under the constraint of limited
cognitive resources, humans trade off rewards with the effortful task
of structure learning. Notably, our analysis showed that humans may
spend up to around 100 trials to fully learn hierarchical task structures
(Fig. 4D), which suggests that overlooking this meta-learning process
in computational modeling may confound the interpretation of choice
behavior in tasks with complex structures.

Contrary to our expectations based on previous work (Botvinick
et al., 2009; Xia & Collins, 2021), the structures learned by humans
to represent hierarchical policies appear to be temporally backward
rather than forward: the immediate information before decision-making
(stage 2 stimulus) contextualizes a policy over earlier information
held in memory (stage 1 stimulus). In our running tomato example
(Fig. 1), the temporally backward policy representation would support
a decision-making process where the person thinks back to the action
they performed previously (preheating the oven or slicing sandwich
bread) before choosing an action (roast or slice) on the tomato. By con-
trast, the more standard ‘‘forward’’ hierarchical reinforcement learning
option model would instead assume that participants pre-load the
‘‘roasting’’ policy as they preheat the oven, such that they already
know what to do with the tomato at the next stage. Although both
temporally forward and backward structures can be flexibly transferred
and composed to facilitate new learning, a temporally backward one
may be more resource-rational, since it allows hierarchy to emerge
without the effortful process of re-contextualizing compressed policies.
This temporally backward structural organization is a departure from
the standard options framework in hierarchical reinforcement learn-
ing, which implies the opposite (temporally forward) representation
structure (Botvinick et al., 2009; Sutton et al., 1999).

Moreover, the temporally backward decision process reveals the
integral role of working memory in forming and executing hierarchical
policies: the earlier information (stage 1 stimulus) is held in memory
until decision time, when the later information that contextualizes the
trial (stage 2 stimulus) is observed. Here, working memory connects
different levels of abstractions over time, allowing policy information
at multiple timescales to be integrated to guide decision-making. This
novel insight corroborates the perspective that working memory and
reinforcement learning are intertwined processes that facilitate each
other and should not be considered separately (Collins & Frank, 2012;
Yoo & Collins, 2022). Future research should explore applications
of temporally backward structures with a working memory mecha-
nism to solve hierarchical reinforcement learning problems in artificial
intelligence.

Another potential extension is to apply our framework to model
hierarchical policies and abstractions in goal-directed decision-making
and planning (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Moli-
naro & Collins, 2023), in which the agent additionally learns the
transition structure of the states and uses this information to choose
actions to achieve specific outcomes. As a temporally forward process,
would planning strengthen temporally forward hierarchical representa-
tions and inhibit temporally backward ones? Would it impact the roles
of temporal and state abstractions in forming hierarchical policies?
Since our current task paradigm focuses on investigating abstractions,
all state transitions in the task are unstructured (i.e., random) to
minimize potential confounds. Building on the algorithmic framework
developed in our current work, incorporating planning in the decision-
making process may help us gain a more complete understanding of
how abstractions support learning and decision-making in real life.

Future work should also aim to replicate our main findings on
samples that are more representative of the general human popula-
tion to evaluate the generalizability of our results to human learning
overall. Although we collected data on a large number of participants
(n = 1026), the population we sampled from was limited to students
enrolled in college-level courses at a specific university, which might
have introduced bias in our results. However, we note that the old
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task paradigm with similar training but different test conditions was
replicated on Amazon Mechanical Turk, which is more representative
of humans in general (Xia & Collins, 2021). Despite the potential limi-
tations imposed by our participant population, our main findings were
valid on the majority of our sample (75% of all participants including
top and mid performers), which implies promising generalizability to a
broader human population.

5. Conclusions

Our algorithmic framework characterizes how the interplay be-
tween various cognitive processes supports structured decision-making,
including reinforcement learning, policy compression, meta-learning,
and working memory. We emphasize the important contributions of
state abstractions in forming hierarchical policies and challenge the
conventional conception of temporal abstractions by introducing the
novel temporally backward structure. These algorithmic architectures
serve as backbones of compositionality, enabling humans to efficiently
and flexibly generalize knowledge between related tasks — a hallmark
of human intelligence. We hope our work will inspire and inform
the development of machine learning architectures that can learn and
generalize like humans.
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Appendix A. Supplementary Methods

A.1. Task

The experiment consisted of 12 blocks, with an optional 20-second
break between every two consecutive blocks. The first two blocks had
a minimum of 32 and a maximum of 60 trials: after completing 32
trials, participants skipped ahead to the next block as soon as they
reached the criterion of less than 1.5 key presses per trial in each stage
averaged over the past 10 trials. All other blocks included 32 randomly
ordered trials with 8 trials for each combination of stage 1 and stage 2
stimuli pair. The trials were pseudo-randomly ordered such that in each
block, there were never more than three consecutive iterations of the
same stimulus in stage 1. Furthermore, among the trials that had the
same stage 1 stimulus in each block, there were never more than three

consecutive iterations of the same stimulus in stage 2. In each stage,
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Table A.2
Number of participants by experiment, condition, and cluster.

Cluster Experiment 1 Experiment 2

V1-V1 V1-V3 V3-V1 V3-V3 V1-V1 V1-V2 V2-V1 V2-V2

Best 68 61 79 59 78 83 86 77
Mid 27 35 23 30 36 39 37 27
Random 17 20 15 23 22 23 30 31

All 112 116 117 112 136 145 153 135

participants were instructed to choose from one of four keys on their
keyboards (Q, W, E, and R for stage 1, and U, I, O, and P for stage 2).
When an invalid key was selected, a feedback message was shown to
remind the participant which four keys to choose from. The experiment
only advanced to the next stage upon a correct key press or until 10
key presses had been made in the current stage. In stage 1, when a
wrong key was pressed, no explicit feedback was shown (the stimulus
remained the same), and upon a correct key press, the experiment
transitioned into stage 2; in stage 2, a wrong key press triggered a
‘‘wrong key’’ message, while a correct key press led to positive feedback
(unlocked chest filled with gold; Fig. 3A).

A.2. Data

A.2.1. Data collection
The experiments were administered in two batches: Experiment 1

tested all combination conditions of V1 and V3, while Experiment 2
included all combinations of V1 and V2. Experiment 1 was conducted
between September 2022 and March 2023, and Experiment 2 between
September 2023 and December 2023. Each participant only completed
the experiment once and all participants of Experiment 1 were excluded
from the recruitment for Experiment 2. After inspecting the results of
Experiment 1, which differed from previous work (Li et al., 2022) in
not only the test conditions, but also the stimuli and action spaces,
we additionally conducted Experiment 2, which featured the same test
conditions as those adopted by Li et al. (2022), to replicate previous
results using the updated task paradigm. All participants of Li et al.
(2022) were excluded from the recruitment for both our experiments.

Table A.2 contains the number of participants per condition and
experiment, divided by performance-based cluster assignments. We
thoroughly compared the V1-V1 data between both experiments and
found no significant differences in performance (Fig. B.3) or error types,
which indicated that there were no external factors driving any learning
differences between experiments. Additionally, we did not find any
qualitative differences between our V1-V1 data and those collected
by Li et al. (2022), despite the different stimuli and action spaces
between the task paradigms. Therefore, data from Experiments 1 and
2 were combined in all analyses.

A.2.2. Participant clustering
To group participants based on their task involvement in a data-

driven way, we performed unsupervised clustering on the trial-by-trial
performance data in the training phase. For each participant, we used
a feature vector containing the numbers of key presses in both stages
on the first 32 trials of all training blocks (384 dimensions in total).
We performed k-means clustering on the first 10 principal components
of these features, which was a generous and safe number since the
clustering results were primarily driven by the first 2 principal com-
ponents and cluster boundaries did not change when we used fewer or
more PCs between 5 and 10 (Fig. B.4). We set 𝑘 = 3 to maximized the
interpretability of group average learning behavior: the best performers
exceeded chance performance in both stages, the mid performers only
performed better than chance in stage 2, and the random performers
did not perform better than chance in either stage (Fig. 3B). When
𝑘 = 2, the random and mid performers were combined into one cluster,
while when 𝑘 = 4, the top performers were broken into two smaller
clusters without apparent qualitative learning differences (Fig. B.5).

https://github.com/jl3676/learning_hierarchy
https://experiments-ccn.berkeley.edu/learning_hierarchy_task_demo/exp.html?id=demo
https://experiments-ccn.berkeley.edu/learning_hierarchy_task_demo/exp.html?id=demo
https://experiments-ccn.berkeley.edu/learning_hierarchy_task_demo/exp.html?id=demo
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Appendix B. Supplementary Figures

(see Figs. B.1–B.8)
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Fig. B.1. Learning behavior of the mid performers cluster. A: Post-training learning curves by test condition. B: Human performance was better in the first test block of V3 than
V1 and V2. C: The meta model captured the error rate patterns in early learning of humans, which the fully hierarchical model failed to. D: Human error curves in training were
better matched by the meta model than the hierarchical model.
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Fig. B.2. Comparisons of the temporally forward and backward models on mid performer data. A: In V3-V3 and V1-V3, the backward model had significantly higher likelihoods
than the forward model, while the models did not produce significantly different likelihoods in V3-V1, V1-V2, and V2-V1. B: Overall, the backward model captured qualitative
patterns in human learning performance better than the forward model.

Fig. B.3. Comparing V1-V1 data between Experiment 1 and Experiment 2 within the top performers. A: The normalized average number of key presses in stage 2 across the first
10 trials of each block. B: The learning curves by choice type in the training phase.

Cognition 254 (2025) 105967 
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Fig. B.4. Cluster assignments of individual participants projected onto different principal components in both experiments. The first two principal components were substantially
more informative in separating the clusters than components 3 and 4.

Cognition 254 (2025) 105967 
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Fig. B.5. Learning curves of all clusters identified by the k-means algorithm applied to Experiment 1 data with 𝑘 = 2 and 𝑘 = 4.
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Fig. B.6. Meta-learning model (temporally backward) fit. A: Comparison of the fully hierarchical model and the meta-learning model by AIC on the top performers. B: Parameter
recovery analysis of the meta-learning model using the data of top performers under V1-V1 (n = 146). Parameter identification is strong for some parameters (e.g., 𝛽), but weaker
for others (e.g., 𝜂). C: Model recovery of compression over stage 1 error rate in Block 1 at the individual level. Pearson r = 0.14 and p = 7 × 10−4 for hierarchical model and
𝑟 = 0.63 and p< 10−4 for the meta model.
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Fig. B.7. Learning curves of the models implementing the compressed policies over stage 1 and stage 2, respectively. The models were fitted to human choice data and the fitted
parameters were used to simulate choice data.
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Fig. B.8. Ablating the Bayesian inference mechanism in the meta-learning model. A: Comparison of the model without Bayesian updates (only priors over the three policies) and
the meta-learning model by AIC. The meta model fitted significantly better (two-tailed t-test t = 23, p< 10−4). B: Learning curves of both models compared to humans. The meta
model captured the qualitative error patterns in human behavior while the no Bayesian model failed to.
18 
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